Identified serotonergic neurons in the Tritonia swim CPG activate both ionotropic and metabotropic receptors.

نویسندگان

  • S Clemens
  • P S Katz
چکیده

Although G-protein-coupled (metabotropic) receptors are known to modulate the production of motor patterns, evidence from the escape swim central pattern generator (CPG) of the nudibranch mollusk, Tritonia diomedea, suggests that they might also participate in the generation of the motor pattern itself. The dorsal swim interneurons (DSIs), identified serotonergic neurons intrinsic to the Tritonia swim CPG, evoke dual component synaptic potentials onto other CPG neurons and premotor interneurons. Both the fast and slow components were previously shown to be due to serotonin (5-HT) acting at distinct postsynaptic receptors. We find that blocking or facilitating metabotropic receptors in a postsynaptic premotor interneuron differentially affects the fast and slow synaptic responses to DSI stimulation. Blocking G-protein activation by iontophoretically injecting the GDP-analogue guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S) did not significantly affect the DSI-evoked fast excitatory postsynaptic potential (EPSP) but decreased the amplitude of the slow component more than 50%. Injection of the GTP analogues guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) and 5'-guanylyl-imidodiphosphate, to prolong G-protein activation, had mixed effects on the fast component but increased the amplitude and duration of the slow component of the DSI-evoked response and, with repeated DSI stimulation, led to a persistent depolarization. These results indicate that the fast component of the biphasic synaptic potential evoked by a serotonergic CPG neuron onto premotor interneurons is mediated by ionotropic receptors (5-HT-gated ion channels), whereas the slow component is mediated by G-protein-coupled receptors. A similar synaptic activation of metabotropic receptors might also be found within the CPG itself, where it could exert a direct influence onto motor pattern generation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different functions for homologous serotonergic interneurons and serotonin in species-specific rhythmic behaviours.

Closely related species can exhibit different behaviours despite homologous neural substrates. The nudibranch molluscs Tritonia diomedea and Melibe leonina swim differently, yet their nervous systems contain homologous serotonergic neurons. In Tritonia, the dorsal swim interneurons (DSIs) are members of the swim central pattern generator (CPG) and their neurotransmitter serotonin is both necess...

متن کامل

Paradoxical actions of the serotonin precursor 5-hydroxytryptophan on the activity of identified serotonergic neurons in a simple motor circuit.

Neurotransmitter synthesis is regulated by a variety of factors, yet the effect of altering transmitter content on the operation of neuronal circuits has been relatively unexplored. We used electrophysiological, electrochemical, and immunohistochemical techniques to investigate the effects of augmenting the serotonin (5-HT) content of identified serotonergic neurons embedded in a simple motor c...

متن کامل

A Comparative Analysis of the Neural Basis for Dorsal-Ventral Swimming in the Nudipleura

Despite having similar brains, related species can display divergent behaviors. Investigating the neural basis of such behavioral divergence can elucidate the neural mechanisms that allow behavioral change and identify neural mechanisms that influence the evolution of behavior. Fewer than three percent of Nudipleura (Mollusca, Opisthobranchia, Gastropoda) species have been documented to swim. H...

متن کامل

The Role of Serotonin in Tritonia diomedea1

SYNOPSIS. The within-swim pattern of cycle periods in Tritonia swimming changed when the behavior was repeatedly elicited suggesting that an excitatory process reaches a ceiling or wanes over repeated trials. Exposure to subthreshold stimuli enhanced swimming in response to a subsequent super-threshold stimulus, perhaps using a similar excitatory process. In reduced preparations, subthreshold s...

متن کامل

G protein signaling in a neuronal network is necessary for rhythmic motor pattern production.

G protein-coupled receptors are widely recognized as playing important roles in mediating the actions of extrinsic neuromodulatory inputs to motor networks. However, the potential for their direct involvement in rhythmic motor pattern generation has received considerably less attention. Results from this study indicate that G protein signaling appears to be integral to the operation of the cent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 85 1  شماره 

صفحات  -

تاریخ انتشار 2001